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Fluid-solid phase transition and coexistence of square-well fluids confined in narrow cylindrical
hard pores are characterized using molecular simulation methods. The equation of state containing
a fluid phase, a solid phase and a fluid-solid coexistence state was separately obtained for different
attractive ranges of potential well and pore diameters; �=1.2, 1.3, 1.4, and 1.5 for a pore of diameter
D=2.2�, �=1.5 and 1.65 for a pore of diameter D=2.5�. For �=1.2, 1.3, and 1.4 at pore diameter
D=2.2�, �=1.5 at D=2.5�, the fluid-solid phase coexistence densities and pressure are close to the
hard sphere fluids at the same temperature, while the pressure decreases significantly for �=1.5 at
D=2.2� and �=1.65 at D=2.5�, respectively. We also report the structural properties of the systems
undergoing a phase transition. © 2010 American Institute of Physics. �doi:10.1063/1.3429741�

I. INTRODUCTION

The square-well �SW� interaction potential plays an im-
portant role in the study of fluids as it is the simplest model
containing both attractive and hard-core repulsive interac-
tions. The thermophysical and structural properties of this
model have been studied for many years in both theory and
computer simulation due to practical similarities. Many re-
sults are available for vapor-liquid phase behaviors for the
SW model.1–4 There are several techniques to determine the
vapor-liquid coexistence, such as Gibbs ensemble Monte
Carlo �GEMC�,5 Gibbs–Duhem integration �GDI�,6,7 grand-
canonical transition-matrix Monte Carlo,2,8 but less is known
about the fluid-solid behavior. Pagan and Gunton9 used the
free energy calculation and GDI to determine the fluid-solid
coexistence and the metastable fluid-fluid coexistence for a
short range SW model. Later, Liu et al.10 combined GEMC
with aggregation-volume-biased method in conjunction with
GDI to develop the full vapor-solid, vapor-liquid, and liquid-
solid phase diagrams of the SW model. The aforementioned
studies indicate that the phase behavior of colloidal particles
depends sensitively on the range of interaction, as has been
known since the work of Gast et al.11 So far, the studies of
the fluid-solid coexistence have mainly focused on the bulk
systems as shown previously.

On the other hand within some confinements,12–14 the
fluid-solid properties may exhibit significant deviation from
the bulk ones due to geometrical size effects and the interac-
tion of particles with confining walls. Our previous study15

indicates a strong dependence of the fluid-solid coexistence
of hard sphere fluids on the pore size and it is expected that
both the range of interaction and pore size have significant
effects to the fluid-solid behavior. Another important factor
in studying the behavior of model fluids is the structure.

Several studies have investigated the ordering of particles
under cylindrical confinement.16–20 The structure of the con-
fined fluids is highly dependent on the pore diameter and it
seems there is no simple and continuous dependence, which
can be generalized. Here we especially focus on the narrow
pores, which can only hold one cylindrical layer of particles,
and those are of great theoretical and experimental interest,
as in such systems the particles can be self-assembled to
form single helical or twisted helical structure. The systems
resemble the colloids confined in very narrow channels for
constructing nanowires,21–23 peapod-related system such as
C60 encapsulated in Carbon-nanotube,19,24 and even the
double helices of DNA on the large molecular scale.25 Also,
better and more understanding of the fluid-solid behavior and
structure of these systems ultimately help to find practical
nanoapplications in capillarity, lubrication, gas purification
and storage, fabrication of nanofluidic devices, and provide
important insights on the self-assembly helical structure,
which is commonly found in the nature.

To this end, we elucidate the fluid-solid behavior and
structure of the SW fluids under narrow cylindrical confine-
ment using molecular simulation and modeling methods to
investigate the effect of range of interaction and narrow pore
sizes. The pore sizes are chosen to hold only one cylindrical
shell of particles in such systems, which have small interface
and fraction of particles due to small cross section. The free
energy gap during the fluid-solid transition is small enough
to ensure the equilibrium of the coexisting phases in the
same simulation box, thus this makes a direct simulation of
equilibrium of fluid and solid phases in one simulation box
possible. The reset of this paper is organized as follows. In
the next section, we briefly describe our systems and meth-
ods used for obtaining the equation of state and methods to
characterize the structure of the confined SW fluids. Section
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III describes the details of simulation conditions in this work.
Section IV presents the results and discussion followed by
the conclusion in Sec. V.

II. METHODOLOGY

We consider the system of SW particles confined in nar-
row cylindrical hard pore of diameter D. The particles are
first arranged in cylindrical shell of triangular or square
shape for D=2.2� and 2.5�, respectively, where � is the
diameter of the confined particles. To obtain the accurate
equation of state along an isotherm from fluid to solid in-
cluding the coexistence regime, we have run series of mo-
lecular dynamics �MD� simulations. Once the equation of
state is known, the fluid isotherm is fitted to a convenient
fitting function of the form26

�P =
�

1 − a�
+ b� �

1 − a�
�2

+ c� �

1 − a�
�3

, �1�

where � is the number density and �=1 /kT is the inverse
temperature, where T and k are the temperature and the
Boltzmann constant, respectively. The solid isotherm is fitted
to a second order polynomial equation in the form of �P
=a+b�+c�2. The pressure values within the coexistence re-
gime are averaged; the pressure at which both phases are in
equilibrium, then the freezing and melting densities are ob-
tained by solving the equation of state for both phases at this
pressure. We separately performed the isobaric-isothermal
Monte Carlo �NPT MC� simulations and compared the re-
sults to those of MD. The comparison indicates that MD is
more efficient to evaluate the phase coexistence in such sys-
tems.

In this work, the pressure components of the SW fluid
confined in the cylindrical pore using MD is obtained by
using the virial theorem of the pairwise-additive potential,27

P�� = �kT +
1

V��
i=1

N−1

�
j�i

N

�rij���fij��	 , �2�

where N is the number of molecules, rij is the relative posi-
tion vector between the center of mass of molecules i and j,
and fij =−�uij is the force between them at the potential en-
ergy uij. The angle bracket indicates the time average of MD
or the ensemble average of MC. In the SW model, the colli-
sion of two particles occurs when the distance of two par-
ticles equal to hard-core. The forces between two particles,
during the collision, have an infinite magnitude but act for an
infinitesimal time. Each pair collision contributes an amount
to the average of Eq. �2� when integrated over time, while
the particle-wall collision has no contribution to the spread-
ing pressure,

P�� = �kT +
1

Vtsim
�

collision
�rij����pij��, �3�

where tsim is the total simulation time and the sum is over all
collision occurring during this period, �pij is the difference
of momentum before and after the collision between atom i
and j.

The microstructure of the system is monitored by the
one-body radial density profile ��r�, the axial pair distribu-
tion function g�z�, bond order parameters Q6 and two-
dimensional �2D� hexagonal order parameter �6. Of these
three functions, the first two are used to monitor the radial
and axial distribution of particles, respectively, and Q6 and
�6 are used to monitor the global order of the system. The
reduced radial density profile ���r� is obtained by dividing
the cylindrical pore into n concentric cylindrical shells with
the same thickness then sample the number of particles di-
vided by the shell volume. Thus, the definition of ���r� can
be expressed as

���ri� =

Ni�

	�ri
2 − ri−1

2�L
�3, �4�

where Ni is the number of particles, whose distance to the
pore axes are in the range of ri−1 to ri, with ri=�r
 i, and �r
the thickness of the cylindrical shell. L is the length of the
cylindrical pore. The axial pair distribution function g�z�� is
modified from the pair correlation function, which is ex-
tracted from the following equation:

�
z�=0

z�=�

��g�z��	R�2dz�  N , �5�

where N is the total number of particles, ��=��3 is the re-
duced density, z�=z /� is the reduced axial distance, and R�

=R /� is the reduced pore radius. The upper limit of z� is
changed to the axial length of the simulation box, L /� in
calculation. The global order of the system indicates whether
a system is fluidlike or solidlike and is characterized by the
bond order parameters introduced by Steinhardt et al.28 To
calculate bond order parameters, we start from the spherical
harmonic associated with every bond rij in the system. Here
a bond is not chemical bond but a vector joining two neigh-
boring atoms, whose distance is less than a cut off radius.
The quantity is defined as29

Qlm = Ylm���rij�,�rij�� , �6�

where Ylm is the spherical harmonic and � and  are polar
and azimuthal angles of the bond with respect to a fixed
coordinate frame, which can be arbitrarily chosen. The glo-
bal bond order parameter Ql, which is rotationally invariant,
is then defined as follows:

Ql � � 4	

2l + 1 �
m=−l

l

�Q̄lm�2�1/2

, �7�

where Q̄lm is the average of Qlm’s over all bonds in the sys-
tem. In this study, we use Q6, of which l=6 as the order
parameter. Q6 is very sensitive to the global structure, which
significantly increases when the ordered structure appears
and vanishes for the isotropic fluid. In addition to the bond
order parameter Q6 which captures the order of a system in
three dimensions, we have also utilized the 2D order param-
eter �6 defined as
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�6 = � 1

M
�
i=1

M
1

Ni
�
j=1

Ni

exp�i6�ij�� , �8�

where M is the number of particles in the same cylindrical
layer, Ni is the number of nearest neighbors of particles i. We
define the nearest neighbors as those particles j within a
distance 1.3� from particles i, and �ij is the angle between
two neighboring particles i and j and an arbitrary but fixed
axis. The cylindrical layer is unrolled into a flat plane so that
the 2D order parameter can be obtained. The value of �6

equals to 1 for a perfect hexagonal plane, but far from 1 for
a disordered phase.

III. SIMULATION MODEL AND DETAILS

In this work, the fluid-fluid interaction is represented by
the SW potential,

uf−f = � � , 0 � rij � � ,

− � , � � rij � �� ,

0, �� � rij ,
� �9�

where �� is the potential-well diameter, and � is the depth of
the energy well. The cylindrical pore is represented by the
one body potential,

uw−f = �� , r � �/2.0,

0, r � �/2.0,
� �10�

where r is the distance from the center of particle to the wall.
In MD simulation, the wall acts as perfect rigid cylindrical
surface. During the simulation, normal component of the
momentum of the particle colliding with the wall is reversed
while keeping the same magnitude. The periodic boundary
condition is applied along the pore axis, which is chosen as z
direction. We adopt the values of the units such that � and �
are unity. All length scales are in unit of � and other reduced
units used in the work are the temperature T�=kT /�, pres-
sure P�= P�3 /�, and time t�= t / ���m /��0.5�. Note that the
superscript asterisk will be omitted in the text below for the
sake of convenience.

The MD simulations are first performed in canonical en-
semble �NVT�, i.e., during the simulation, the number of par-
ticle, the volume of simulation box, and the temperature are
kept constant. The temperature was kept constant by simple
momentum scaling, with all momenta multiplied by an ap-
propriate factor at the end of each time step �t so that the
total kinetic energy of the system remains constant. The time
step, �t, was fixed at 0.05. The only effect of the time step is
to determine the frequency of updating the properties mea-
sured in the simulation and rescaling the momenta to the
desired temperature. The equilibrium period was set to fol-
low two steps. We first set the simulation at T=10.0 to ensure
the particles are fully distributed in the cylindrical pore. Then
the system was quenched to the target temperature. The total
time steps for these two steps were set to 5
104 and we
switched the simulation to microcanonical ensemble �NVE�
to collect the equilibrium data. The time step for production
was taken as 2
105 and we repeated each simulation five
times. Longer simulations were performed for the coexist-

ence regime. The simulations were conducted with the sys-
tem size of 1000 particles and we carefully checked that the
system size is sufficient to avoid finite-size effect in our sys-
tem. For the NPT MC simulations, the change in volume was
made by changing the length of the cylinder keeping the
diameter fixed. We performed N trials of displacing a ran-
domly chosen particle followed by one trial of changing the
pore length. The initial configuration was set to the random
configuration at �=0.7. For NPT simulations, equilibrium
and production cycles were set to 5
105 in most cases.

IV. RESULTS AND DISCUSSION

In Fig. 1 we compare the equation of state of the SW
fluid confined in a cylindrical pore of D=2.2 obtained by
MD and NPT MC. The MD simulations were first performed
to obtain the pressure as the function of density. The values
of pressure were then used as the input for the NPT MC
simulations. Both results show good agreements on the fluid
and solid branches. The discontinuity on the equation of
state, which is observed from both methods, is indicative of
the fluid-solid transition. This comparison indicates that both
methods are accurate enough to determine the equation of
state at both fluid and solid branches. However, for determin-
ing the fluid-solid coexistence regime, we find that MD is
better than NPT MC, as MD not only has much smaller
relaxation time, which enables us accurately to determine the
coexistence density regime and coexistence pressure, while
NPT MC generally cannot pinpoint these properties in such
accuracy.

Figure 2 presents the equation of state of the SW fluid
confined in the pore of D=2.2 for �=1.5 at different tem-
peratures. The result of hard sphere is plotted for a compari-
son as the infinite temperature limit ��→0�, where the
square well potential is reduced to hard sphere one. We can
observe that for all temperatures studied, �Pzz’s are lower
than that of hard sphere over the densities of interest, which
indicates that the attractive forces actually affect the system

FIG. 1. Comparison of the equation of state ��Pzz vs �� of the SW mol-
ecules of �=1.5 confined in cylindrical hard pore of D=2.2 at T=1.0 ob-
tained by NPT MC and MD simulations, which are represented by square
and circle symbols, respectively. The solid line indicates the fit of result at
fluid branch using Eq. �1�, and the dash line is the second order polynomial
fit to the solid branch. Error bars are the standard deviation of 5 independent
runs.
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to be freezing at lower pressures. The equation of state at
high temperature is always above that of low temperature
including the fluid-solid coexistence branch. The coexistence
spreading pressure becomes lower as the temperature re-
duces, which is also same for the fluid branch, and the coex-
istence range becomes larger as the temperature decreases
due to the early start of the freezing at low temperature. Note
that the relative differences in the coexistence spreading
pressures would be dramatically larger if � is excluded from
the figure, thus the effect of the temperature is considered to
be large on the coexistence spreading pressure for �=1.5.
Nevertheless, we found that the melting densities are almost
invariant over the variation of the temperature.

With the same conditions of the system, the range of the
interaction is decreased and Fig. 3 presents the results of �
=1.2, 1.3, and 1.4 for D=2.2. For a shorter attractive range
�=1.2, the equation of state at high temperature is apparently
above that of low temperature at the fluid branch, however,
at ��0.7, the differences of the equations of states at differ-
ent temperatures vanish and those are observed to coincide at
the solid and fluid-solid coexistence branch. Note that if � is
omitted from Fig. 3, the reduced coexisting pressures show
some differences, but not as dramatic as in the case of the

longer interaction range �=1.5 in this pore size. Conse-
quently, freezing and melting densities change little with the
temperature at this short attractive range, which is shown
from Fig. 4. The equations of states for �=1.3 and 1.4 show
the similar behavior of �=1.2, yet the fluid pressure slightly
increases as � increases from 1.2 to 1.4 at the same density,
while the fluid-solid coexistence branch and solid branch are
insensitive to the well extent.

With a slight increase of the pore size, the structure of
the system is significantly changed from at most three
coplanar molecules in D=2.2 to four coplanar molecules in
D=2.5. Figure 5 shows the equation of state for the pore
diameter D=2.5. We found that, all equations of states of �

=1.5 in D=2.5 at different temperatures are close to each
other to that of hard sphere except at the coexistence branch
�i.e., slightly higher than that of hard sphere� while the case
of �=1.5 in D=2.2 shows large deviations of the equations
of states at different temperatures. When the attractive range
is increased to �=1.65 in D=2.5, the behavior of the equa-
tion of state becomes similar to the case of �=1.5 in
D=2.2. It is shown that there exist some scale-up effect be-
tween the pore size and the interaction range in behavior of

FIG. 2. The equation of state ��Pzz vs �� of the SW molecules of �=1.5
confined in a cylindrical hard pore of D=2.2 at different temperatures 0.5,
0.8, 1.0, 2.0, and 5.0. The result of hard spheres confined in the same pore
size is shown for comparison.

FIG. 3. The equation of state ��Pzz vs �� of the SW molecules of �=1.2
confined cylindrical hard pore of D=2.2 at different temperatures 0.5, 0.8,
1.0, and 2.0, and �=1.3 and 1.4 at T=1.0. The result of hard sphere is shown
for comparison.

FIG. 4. The temperature-density fluid-solid phase diagram of the SW mol-
ecules confined in a cylindrical hard pore of D=2.2 for the short range �
=1.2 and the long range �=1.5, using MD simulation described in the text.

FIG. 5. The same equation of state as in Fig. 3 for D=2.5 and �=1.5 at
T=0.8, 1.0, and 2.0, �=1.65 at T=1.0 and 2.0. The equation of state of hard
spheres confined in D=2.5 is shown for comparison.
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the equation of state even with the variation of the structure
�i.e., triangular to square shape, see Fig. 10�. The detailed
coexistence properties are listed in Table I.

Figure 6 shows the bond order parameter Q6 as the func-
tion of density in the pore size D=2.2. Q6 in the current
work is found to be nonzero for dilute fluid due to a confine-
ment effect. The system with a random set of bonds has a Ql

value of 1 /�Nb but not zero30 as within the tight confine-
ment, the direction of bonds joining each pair of atoms is not
stochastic but has limited orientations. An interesting phe-
nomenon has been observed with the increase of the density

of the fluid. Q6 increases to reach a value around 0.15 at the
density around 0.75. Similar behavior is found for �6 with
slight increase within this density range, as shown in Fig. 7.
However, the equation of state shows that the system is still
in fluid phase at this density. Since the particles form a struc-
ture of spiral tetrahedra along the pore axis, an ordered struc-
ture is created even for the fluid phase under a narrow con-
finement. With further increase of the density, Q6 and �6

decrease to a minimal value and increase sharply. Over this
density range, the phase transition can be associated with the
structure of spiral packing of tetrahedra transforming to tri-

FIG. 8. Axial pair distribution function g�z� for the SW molecules confined
in cylindrical pore of D=2.2 at T=1.0 and �=1.2, at different average
densities, 0.30 �dilute fluid�, 0.75 �dense fluid�, 0.80 �around freezing den-
sity�, 0.85 �within fluid-solid coexistence�, 0.89 �around melting density�,
and 0.92 �solid�.

TABLE I. Fluid-solid coexistence data estimated from MD simulation of
SW molecules confined in cylindrical pore with various well diameters un-
der narrow pore sizes. The subscripts f and s represent fluid and solid,
respectively. The number�s� in parentheses represent the error in the last
digit�s�.

T � f �s Pzz

D=2.2
�=1.2 0.5 0.8049�3� 0.8941�3� 7.27�4�

0.8 0.8053�2� 0.8924�3� 11.69�4�
1.0 0.8053�4� 0.8922�4� 14.69�8�
2.0 0.8042�4� 0.885�1� 29.5�1�
5.0 0.803�1� 0.885�1� 74.2�6�

�=1.3 1.0 0.7991�4� 0.8837�4� 14.93�7�
�=1.4 1.0 0.799�2� 0.867�1� 14.4�2�
�=1.5 0.5 0.753�2� 0.872�2� 3.14�3�

0.8 0.757�3� 0.877�1� 7.01�13�
1.0 0.765�1� 0.877�1� 9.90�4�
2.0 0.784�2� 0.877�1� 24.4�3�
5.0 0.7964�3� 0.882�1� 68.8�1�

HSa 1.0 0.803�1� 0.878�2� 14.91�9�

D=2.5
�=1.5 0.8 0.836�2� 0.906�1� 13.69�35�

1.0 0.836�1� 0.905�1� 16.56�20�
2.0 0.8347�7� 0.9016�8� 31.13�15�

�=1.65 1.0 0.756�5� 0.9045�4� 7.33�29�
2.0 0.803�1� 0.9019�2� 21.77�10�

HSa 1.0 0.826�2� 0.893�3� 14.8�4�
aReference 15.

FIG. 6. The bond order parameter Q6 as the function of density for the SW
molecules confined in a cylindrical hard pore of D=2.2 at different tempera-
ture and potential range. Symbols square, circle and triangle represent sys-
tem at T=1.0 and �=1.2, T=1.0 and �=1.5, T=2.0 and �=1.5, respectively.

FIG. 7. The 2D bond order parameter �6 as the function of density for the
SW molecules confined in a cylindrical hard pore of D=2.2 at T=1.0 and
the potential range �=1.2.
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angular packing of three particles rotated with an angle of
	 /3 against the nearest layer of the triangular particles along
the pore axis �see Fig. 10�.

To understand the structure in details, the axial distribu-
tion function g�z� and the density profile ��r� are studied, as
shown in Figs. 8 and 9. Also, the snapshots of all systems of

interest are presented in Fig. 10 for convenient view. At the
density 0.3, g�z� shows a peak at z=1.0 and a valley at z
=1.2, which happen to be the hard core diameter and the
potential well extent, respectively and it quickly decays to
1.0 as z increases, thus the system does not have a long range
order at this density. For �=0.75 and 0.80, two peaks appear
at z�1.0, followed by the peaks periodically appeared at the
interval of about 0.33, and the value of g�z� at z=0 is nearly
zero. The two bond order parameters suggest that there is a
partial ordered phase of spiral packing of tetrahedra appears
around this density range. Indeed, the position of peaks at
g�z� matches with the axial distance of the peaks of the tet-
rahedron. For density 0.85 �within coexistence�, 0.89 �around
melting point�, and 0.92 �solid phase�, a sharp peak appears
at z=0, and the peak at z=1.0 moves to z0.87, followed by
series of peaks periodically appeared at the interval about
0.87. This phenomenon indicates that the tetrahedral packing
thus is transformed to triangular packing. Note that for the
density within coexistence, there exist two small peaks be-
tween the sharp peak at z=0 and z0.87, which indicates
that both tetrahedral and triangular packings are coexisting in
the system. There is no distinct discontinuity in ��r� as den-
sity increases, however, ��r�’s vary near to the wall at low
densities, which indicates that the particles are loosely
packed and even makes the pocket of particles at the lowest
density of interest. This behavior is attributed to the entropic
dominance on the system, that particles spontaneously move
to the more accessible space to maximize the entropy of the
system. In the narrow pore, which can hold only one layer of
particles at a plane perpendicular to the z direction, the at-

FIG. 9. Radial density profiles ��r� for the same system as in Fig. 8.

FIG. 10. Snapshots for the SW molecules confined in the narrow cylindrical
pores of D=2.2 �a to d�, and D=2.5 �g to i� at different average densities: a,
�=0.3 �dilute fluid�, b, �=0.75 �dense fluid, spiral packing of tetrahedron�,
c, �=0.85 �fluid-solid coexistence�, d, �=0.92 �solid, triangular packing�, g,
�=0.3 �dilute fluid�, h, �=0.85 �fluid-solid coexistence� and i, �=0.95
�solid, square packing�. The tetrahedral, triangular, and square packings are
shown in e, f , and j, respectively. Two different structures are found in the
corresponding coexistence densities in D=2.2 �c-1 and c-2� and D=2.5 �h-1
and h-2�.

FIG. 11. Axial pair distribution function g�z� for the SW molecules confined
in cylindrical pore of D=2.5 at T=1.0 and �=1.5, at different average
densities, 0.30 �dilute fluid�, 0.80 �dense fluid�, 0.83 �around freezing den-
sity�, 0.85 �within fluid-solid coexistence�, 0.90 �around melting density�,
and 0.95 �solid�.
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tractive force has little impact to the radial density profile
and the behavior of ��r� is similar to that of hard sphere
systems confined in hard pores discussed by Duran-
Olivencia et al.16 Similar behavior was also observed in D
=2.5, as seen in the g�z� function shown in Fig. 11, where
three peaks are observed at z�1.0 at �=0.80, 0.83, and 0.85
indicating a twisted helical structure, and disappear at
�=0.90 and 0.95, where the structure is transformed to a
square shape consisting of four particles sharing the same z
against another nearest square layer by rotating an angle of
	 /4.

V. CONCLUSION

In this work, we have studied the phase behavior of the
SW fluid confined in narrow cylindrical pore using molecular
simulation methods. The full equation of state including a
fluid phase, a solid phase and a fluid-solid coexistence was
calculated for a wide range of temperature and various at-
tractive ranges for the pore diameter D=2.2 and 2.5. Based
on our experience in the work and the comparison with NPT
MC simulation, we consider the MD method to be a good
choice to determine the equation of state, especially for the
fluid-solid coexistence. We found that there is a threshold of
the attractive range �, below which the fluid-solid behavior
varies little with respect to temperature and close to that of
hard spheres under same thermodynamic condition. In addi-
tion to the fluid-solid coexistence calculation, we also
present the structure properties of the system from dilute
fluid to solid. In particular, we found a partially ordered
structure in the dense fluid due to the strong confining effect
of the boundary; the mix of triangle and square shapes of the
SW particles was observed.

We note that our characterization of the fluid-solid phase
transition is based on observing the distinct constant pressure
in the equation of state �i.e., Pzz versus ��� under constant
temperature. In bulk, the constant pressure region �i.e., fluid-
solid phase transition� is unobtainable for the hard sphere
system by using the generic NVT MD simulation, however,
the same method has shown its capability to capture the
emergence of the phase transition for the hard sphere fluid
confined in the cylindrical pore without any extra recipe in
simulation technique.15 In this study, although the occurrence
of the phase transition has been assessed even with coincid-
ing variation of calculated order parameters, we alert that one
must not think of this particular phase transition as the first-
order transition without a proof of thermodynamic phase
equilibria. The absence of the driving force of the phase
equilibria or the discontinuity of the free energy. Unfortu-
nately, the development for the free energy calculation in-

volving cylindrical pore has been little or none to our knowl-
edge. It is rare even for the hard sphere but currently initiated
with a free volume approach by our group, thus a full inves-
tigation on the first-order transition of the system of interest
is to be done in future work.
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